『壹』 哪些知识可以作为执业药师继续教育
执业药师抄继续教育学习的内容包袭括:gsp解读、药品不良反应监测、执业药师继续教育有关规定、职业道德准则、职业礼仪、药品说明书解读、用药错误防范策略、抗菌药物临床应用指导原则解读、高血压合理用药指南、常见病症的诊疗与合理用药、中药注射剂的安全使用、时辰药理学与给药方案设计、医学常规检查、解剖学、营养学、多靶点药物治疗及药物发展等。
成都华商教育执业药师培训部为你解答;纯手打,望采纳
『贰』 药物的发展史
l9世纪末,化学工业的兴起,Ehrlich化学治疗概念的建立, 为20世纪初化学药物的合成和进展奠定了基础。例如早期的含锑、砷的有机药物用于治疗锥虫病、阿米巴病和梅毒等。在此基础上发展用于治疗疟疾和寄生虫病的化学药物。 20世纪30年代中期发现百浪多息和磺胺后,合成了一系列磺胺类药物。1940年青霉素疗效得到肯定,β内酰胺类抗生素得到飞速发展。化学治疗的范围日益扩大,已不根于细茵感染的疾病。随着1940年woods和FildeS抗代谢学说的建立,不仅阐明抗菌药物的作用机理,也为寻找新药开拓了新的途径。例如根据抗代谢学说发现抗肿搐药·利尿药和抗疟药等。药物结构与生物活性关系的研究也随之开展,为创制新药和先导物提供了重要依据。30比~40年代发现的化学药物最多,此时期是药物化学发展史上的丰收时代。 进人50年代后,新药数量不及初阶段,药物在机体内的作用机理和代谢变化逐步得到阐明,导致联系生理、生化效应和针对病因寻找新药·改进了单纯从药物的显效基团或基本结构寻找新药的方法。例如利用潜效(Latentiation)和前药(Prodrug)概念,设计能降低毒副作用和提高选择性的新化合物。1952年发现治疗精神分裂症的氯丙嗪后·精神神经疾病的治疗,取得突破性的进展。非甾体抗炎药是60年代中期以后研究的活跃领域,一系列抗炎新药先后上市。 60年代以后构效关系研究发展很快,已由定性转向定量方面。定量构效关系(QSAR)是将化合物的结构信息、理化参数与生物活性进行分析计算,建立合理的数学模型,研究构-效之间的量变规律,为药物设计、指导先导化合物结构改造提供理论依据。QSAR常用方法有Hansch线性多元回归模型,Free-WilSon加合模型和Kier分子连接性等。所用的参数大多是由化合物二维结构测得,称为二维定量构效关系(2D-QSAR)。50~60年代是药物化学发展的重要时期70年代迄今,对药物潜在作用靶点进行深入研究,对其结构、功能逐步了解。另外,分子力学和量子化学与药学科学的渗透,X衍射、生物核磁共振、数据库、分子图形学的应用,为研究药物与生物大分子三维结构,药效构象以及二者作用模式,探索构效关系提供了理论依据和先进手段,现认为SD-QSAR与基于结构的设计方法相结合,将使药物设计更趋于合理化。 对受体的深入研究·尤其许多受体亚型的发现,促进了受体激动剂和秸抗剂的发展,寻找特异性地仅作用某一受体亚型的药物,可提高其选择性。如β和α肾上腺素受体及其亚型阻滞剂是治疗心血管疾病的常用药物;组胺H2受体阻滞剂能治疗胃及十二指肠溃疡。内源性脑啡酞类对阿片受体有激动作用,因而呈现镇痛活性,目前阿片受体有多种亚型(如δεγηκ等)为设计特异性镇痛药开拓了途径。 酶是高度特异性的蛋白质,生命活动许多是由酶催化的生化反应,故具有重要的生理生化活性。随着对酶的三维结构、活性部位的深入研究,以酶为记点进行的酶抑制剂研究,取得很大进展。例如通过干扰肾素(Renin)-血管紧张素(Angiotensin)-醛固醇(Aldosterone)系统调节而达到降压效用的血管紧张汞转化酶(ACE)抑制剂,是7O年代中期发展起来的降压药。一系列的ACE抑制剂如卡托普利、依那普利·赖诺普利等已是治疗高血压、心力衰竭的重要药物。3羟基-3-甲戊二酰辅酶A(HMG-CoA)还原酶抑制剂,对防治动脉粥样硬化、降血脂有较好的疗效。噻氯匹定可抑制血栓素合成酶·用于防治血栓形成。 离子通道类似于活化酶存在于机体的各种组织,参与调节多种生理功能。7O年代末发现的一系列钙拮抗剂(Calcium Antagonists)是重要的心脑血管药,其中二氢砒锭啶类研究较为深入·品种也较多,各具药理特点。近年发现的钾通通调控剂为寻找抗高血压、抗心纹痛和I类抗心律失常药开辟了新的途径。 细胞癌变认为是由于基因突变导致基因表达失调和细胞无限增殖所引起的,因此可将癌基因作为记点,利用反义技术(antisense technology)抑制细胞增殖的方法,可设计新型抗癌药。 8O年代初诺氟沙星用于临床后,迅速掀起喹诺酮类抗菌药的研究热潮,相继合成了一系列抗菌药物,这类抗菌药和一些新抗生素的问世,认为是合成抗菌药发展史上的重要里程碑。 寻找内源性活性物质是药物化学研究的内容之一,近年来发现许多活性多肽和细胞因子·如心钠素(ANF)是8O年代初从鼠心肌匀浆分离出的心房肽,具有很强的利尿、降压和调节心律的作用,内皮舒张因子(EDRF)NO是同时期证实由内皮细胞分泌具有舒张血管作用的物质,其化学本质后证实是一氧化氮(Ho)。它是调节心血管系统、神经系统和免疫系统功能的细胞信使分子,参与机体的多种生理作用,9O年代后,有关NO的研究已成国际的热点。NO供体和NO合酶抑制剂的研究正方兴未艾,将为心血管抗炎药等开拓新的领域。 生物技术(生物工程)是近2O年发展的高新技术,医药生物技术已成为新兴产业和经济生长点。9O年代初以来上市的新药中,生物技术产品占有较大的比例,并有迅速上升的趋势。通过生物技术改造传统制药产业可提高经济效益,利用转基因动物-乳腺生物反应器研制、生产药品,将是21世纪生物技术领域研究的热点之一。 近年来发展的组合化学技术,能合成数量众多的结相关的化合物,建立有序变化的多样性分子库,进行集约快构速筛选,这种大量合成和高通量筛选,无疑对发现先导化合物和提高新药研究水平都具有重要意义。 70-90年代,新理论、新技术、学科间交叉淮透形成的新兴学科,都促进了药物化学的发展,认为是药物化学承前启后,继往开来的关键时代。 人们认为20世纪中、后期药物化学的进展和大量新药上市,归纳为三方面主要原因:(l)生命科学,如结构生物学、分子生物学、分子遗传学、基因学和生物技术的进展,为发现新药提供理论依据和技术支撑(2)信息科学的突飞猛进,如生物信息学的建立,生物芯片的研制,各种信息效据库和信息技术的应用,可便捷地检索和搜寻所需安的文献资料,研究水平和效率大为提高;(3)制药企业为了争取国际市场,投入大且资金用于新药研究和开发(R&D),新药品种不断增加,促进了医药工业快速发展。
希望采纳
『叁』 药物化学发展经历了哪三个阶段
发展历程
编辑
本世纪药物化学的发展历程,可概括为几个阶段。19世纪末,化学工业的兴起,Ehrlich化学治疗概念的建立, 为本世纪初化学药物的合成和进展奠定了基础。例如早期的含锑、砷的有机药物用于治疗锥虫病、阿米巴病和梅毒等。在此基础上发展用于治疗疟疾和寄生虫病的化学药物。
本世纪30年代中期发现百浪多息和磺胺后,合成了一系列磺胺类药物。1940年青霉素疗效得到肯定,β内酰胺类抗生素得到飞速发展。化学治疗的范围日益扩大,已不限于细菌感染的疾病。随着1940年woods和FildeS抗代谢学说的建立,不仅阐明抗菌药物的作用机理,也为寻找新药开拓了新的途径。例如根据抗代谢学说发现抗肿瘤药、利尿药和抗疟药等。药物结构与生物活性关系的研究也随之开展,为创制新药和先导物提供了重要依据。30~40年代发现的化学药物最多,此时期是药物化学发展史上的丰收时代。
进人50年代后,新药数量不及初阶段,药物在机体内的作用机理和代谢变化逐步得到阐明,导致联系生理、生化效应和针对病因寻找新药·改进了单纯从药物的显效基团或基本结构寻找新药的方法。例如利用潜效(Latentiation)和前药(Prodrug)概念,设计能降低毒副作用和提高选择性的新化合物。1952年发现治疗精神分裂症的氯丙嗪后·精神神经疾病的治疗,取得突破性的进展。非甾体抗炎药是60年代中期以后研究的活跃领域,一系列抗炎新药先后上市。
药物化学
60年代以后构效关系研究发展很快,已由定性转向定量方面。定量构效关系(QSAR)是将化合物的结构信息、理化参数与生物活性进行分析计算,建立合理的数学模型,研究构-效之间的量变规律,为药物设计、指导先导化合物结构改造提供理论依据。QSAR常用方法有Hansch线性多元回归模型,Free-WilSon加合模型和Kier分子连接性等。所用的参数大多是由化合物二维结构测得,称为二维定量构效关系(2D-QSAR)。50~60年代是药物化学发展的重要时期。70年代迄今,对药物潜在作用靶点进行深入研究,对其结构、功能逐步了解。另外,分子力学和量子化学与药学科学的渗透,X衍射、生物核磁共振、数据库、分子图形学的应用,为研究药物与生物大分子三维结构,药效构象以及二者作用模式,探索构效关系提供了理论依据和先进手段,SD-QSAR与基于结构的设计方法相结合,将使药物设计更趋于合理化。
80年代初诺氟沙星用于临床后,迅速掀起喹诺酮类抗菌药的研究热潮,相继合成了一系列抗菌药物,这类抗菌药和一些新抗生素的问世,认为是合成抗菌药发展史上的重要里程碑。
90年代初以来上市的新药中,生物技术产品占有较大的比例,并有迅速上升的趋势。通过生物技术改造,传统制药产业可提高经济效益,利用转基因动物-乳腺生物反应器研制、生产药品,将是21世纪生物技术领域研究的热点之一。如今发展的组合化学技术,能合成数量众多的结构相关的化合物,建立有序变化的多样性分子库,进行集约快速筛选,这种大量合成和高通量筛选,无疑对发现先导化合物和提高新药研究水平都具有重要意义。
70-90年代,新理论、新技术、学科间交叉渗透形成的新兴学科,都促进了药物化学的发展,认为是药物化学承前启后,继往开来的关键时代。
『肆』 多靶点药物中的多靶点是什么意思
您好!
药物靶点是指药物在体内的作用结合位点,包括基因位点、受体回、酶、离子通道、核酸答等生物大分子。现代新药研究与开发的关键首先是寻找、确定和制备药物筛选靶—分子药靶。药物靶点是指药物在体内的作用结合位点,包括基因位点、受体、酶、离子通道、核酸等生物大分子。
感谢您关注问病网,祝您健康!
『伍』 什么是靶向治疗药物
靶向制剂系指一类能使药物浓集于靶器官、靶组织、靶细胞且疗效高、毒副作用小的靶向给药系统,为第四代药物剂型,且被认为是抗癌药的适宜剂型。 1 靶向制剂的分类与作用特点 靶向制剂最初意指狭义的抗癌制剂,随着研究的逐步深入,研究领域不断拓宽,从给药途径、靶向的专一性和持效性等方面均有突破性进展,故还应广义地包括所有具靶向性的药物制剂。 1.1 靶向制剂的分类 按载体的不同,靶向制剂可分为脂质体、毫微粒、毫微球、复合型乳剂等;按给药途径的不同可分为口腔给药系统、直肠给药系统、结肠给药系统、鼻腔给药系统、皮肤给药系统及眼用给药系统等; 按靶向部位的不同可分为肝靶向制剂、肺靶向制剂等。 1.2 靶向制剂的作用特点 脂质体是指将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状体。因以磷脂、胆固醇等类脂质为膜材,具有类细胞膜结构,故能作为药物的载体,并能被单核吞噬细胞系统吞噬,增加药物对淋巴组织的指向性和靶组织的滞留性。 毫微粒、毫微球系利用天然高分子物质如脂蛋白、白蛋白、糖蛋白及纤维素等制成的包囊药物的微粒。毫微粒作为药物载体具有许多优点,现已成为药剂学界研究的前沿热点之一。 靶向制剂应具有以下作用特点:使药物具有药理活性的专一性,增加药物对靶组织的指向性和滞留性,降低药物对正常细胞的毒性,减少剂量,提高药物制剂的生物利用度。
『陆』 为什么新药开发研究要从"靶点"入手
当前,国际上药物研究的竞争,主要集中体现在药物靶点的研究上。一般而言,药物作用的新靶点一旦被发现,往往会成为一系列新药发现的突破口。新的药物靶点对于药物研究、制药企业至关重要,甚至有“一个靶点成就一个产业”的说法。日前,中国科协第23期“新观点新学说”学术沙龙围绕“药物发现——新模式和新策略”问题,展开了一场关于药物靶点的纷争。
“国际上新药研究领域呈现出一个显著的特点,即生命科学前沿技术如功能基因组学、蛋白质组学和生物信息学等与药物研究的交叉结合日益密切,且以发现和验证新型药物靶点作为主要目标。”“从目前来看,对药物靶点的研究可在基因和蛋白质两个层面进行。”在中国科协第23期“新观点新学说”学术沙龙上,专家们的发言围绕着靶点这个术语展开。
中国药理学会会长杜冠华表示,药物靶点的研究最近几年非常火热,但目前还没有取得突出成果。研究的对象、策略都围绕已有药物靶点进行,新的药物观点没有出现。杜冠华认为,“药物靶点的定义还没有说明,药物靶点的作用也还没有突出。”
杜冠华这样给出药物靶点的定义:药物靶点是能够与特定药物特异性结合并产生治疗疾病作用或调节生理功能作用的生物大分子或生物分子结构;对物质的结构产生生物效应,在复杂调节过程或作为通路中具有主导作用;病理条件下对物质的表达、活性、结构或特性可以发生改变。
杜冠华说,目前人类已发现的靶点停滞在500个左右,新靶点发现和确认的周期动辄就是三五年。作为一个年轻领域,靶点药物开发还需要更多新思路、新方法和新技术的介入。
杜冠华在会上表示,作为药物在人体内发生作用的具体“靶标”,国内药物靶点的发现、确认研究还缺乏有效的方法和技术,以致新靶点的发现较为稀少。
“并不是每一种药都找到了其药物靶点。”在学术沙龙上,有专家提出,很多药物到目前并没有发现相应的靶点,但却是很好的药。比如现在治疗糖尿病的药物,很多都是先发现作用,再找到靶点。
军事医学科学院毒物药物研究所研究员廖明阳对此表示,有些药物可能有一些靶点性,但有些药物没有靶点性。比如有些中药用了几千年也不知道靶点,却依然是药物,所以说药物不一定都有靶点。
华中科技大学同济医学院副教授金肆则持不同观点:是药物就一定有靶点。“这个靶点没有找到并不代表没有靶点,如果将靶点的外延扩大就可以找到靶点。”金肆说,“很多药找不到靶点,可能是由于它们是在无机盐等小分子上起作用的。”他从自己的研究中推测,小分子也可能是一类被忽视的靶点,不应将搜索靶点的范围局限在生物大分子上。他表示,尽管确定小分子靶点的技术还较少得到开发,但如果改变思路,加强这方面研究,可能会给开发植物药类靶点药物打开另一扇广阔的大门。
与通常的人工合成药相比,中药的作用机制更为复杂,多名与会专家也表示,在寻找中药靶点的研究中进展困难,甚至连最常见的板蓝根,其靶点至今也没有明确。暨南大学药学院院长王玉强教授表示,现在很多中药是多成分、多靶点。现在,有些人认为这是一个“姑息”的说法,因为我们没有找到它有效的成分和靶点。
更具启发性的观点是军事医学科学院毒物药物研究所研究员周文霞带来的组合靶标的观点。组合靶标其实就是多靶点。她指出,针对老年痴呆、心脑血管病等一些成因复杂疾病,单一靶点的药物难以见效。因此,可建立多靶标的体系,让多个“药靶”构成“靶场”。这些“靶场”组合起来形成一个谱,再用来筛选药物。值得一提的是,中药复方由于原料构成复杂、具备多种药用成分,用于应对多个靶点时比人工合成药物具有天然优势。
一些与会专家称,治疗成因复杂的疾病需要从多个靶点多管齐下,而中药复方可作用于多个靶点,具有良好的发展前景。反对意见则指出,中药复方各成分之间的相互作用会影响疗效可控性,阻碍其进入临床使用,理想的多靶点药物应该是用同一成分作用于多个靶点。
药物靶点研究应用了生命科学研究中可能应用的所有技术方法,但它的发现和确证研究还需要不断创新,探索有效的技术方法和途径。在沙龙上,很多专家都表示,“药物靶点研究将对药物的发现和开发具有极其重要的促进作用,人们对药物靶点的研究将长期进行。随着对药物靶点认识的不断提高,技术方法不断成熟,新的药物靶点将不断发现,具有新型作用靶点、治疗疾病效果更好的药物也将不断出现。”
『柒』 药物化学的发展趋势
任何学科的形成和发展,都与当时的科学技术水平·经济建设要求以及相关学科的促进分不开的。早期的药物化学以化学学科为主导,包括天然和合成药物的性质、制备方法和质量检测等内容。随着科技发展,天然药物化学、合成药物化学和药物分析等学科相继建立。现代药物化学是化学和生物学科相互渗透的综合性学科。主要任务是创制新药、发现具有进一步研究开发前景的先导物。
研究内容主要有:基于生命科学研究揭示的药物作用靶点(受体、酶、离子通道、核酸等),参考天然配体或底物的结构特征·设计药物新分子,以期发现选择性地作用于耙点的新药;通过各种途径和技术寻找先导物,如内源性活性物质的发掘,天然有效成分或现有药物的结构改造和优化,活性代谢物的发现等,其次计算机在药物研究中的应用日益广泛,计算机辅助药物设计(CADD)和构效关系也是药物化学的研究内容。如今信息科学迅猛发展,利用各种数据库和信息技术,比如Reaxys,可广泛收集药物化学的文献资料,有利于扩展思路,开拓视野,丰富药物化学的内容。
药物化学既要研究化学药物的结构、性质和变化规律,又要了解药物用于人体的生理生化效应和毒副反应以及构效关系才能完成它的任务。有人比喻,如果现代 药物化学是一只鼎,那么支撑这只鼎的分别是化学、生物学科和计算机技术。创制新药是涉及多学科·多环节的探索性系统工程·是集体研究的成果,基于药物化学首先要发现先导物,为后续学科研究提供物质基础,在研究过程中起着十分重要的作用,因此药物化学在药学科学领域处于带头学科的地位。Burger的名著《药物化学》现已改为(药物化学与药物发现)(Medicinal Chemistry and Drug Discovery),以突出药物化学的任务是创制新药和发现先导物,从而达到促进医药工业发展,保护人类健康的目的。
另外,分子力学和量子化学与药学科学的渗透,X衍射、生物核磁共振、数据库、分子图形学的应用,为研究药物与生物大分子三维结构,药效构象以及二者作用模式,探索构效关系提供了理论依据和先进手段,现认为SD-QSAR与基于结构的设计方法相结合,将使药物设计更趋于合理化。对受体的深入研究·尤其许多受体亚型的发现,促进了受体激动剂和秸抗剂的发展,寻找特异性地仅作用某一受体亚型的药物,可提高其选择性。如β和α肾上腺素受体及其亚型阻滞剂是治疗心血管疾病的常用药物;组胺H2受体阻滞剂能治疗胃及十二指肠溃疡。内源性脑啡酞类对阿片受体有激动作用,因而呈现镇痛活性,如今阿片受体有多种亚型(如δεγηκ等)为设计特异性镇痛药开拓了途径。
随着对酶的三维结构、活性部位的深入研究,以酶为记点进行的酶抑制剂研究,取得很大进展。例如通过干扰肾素(Renin)-血管紧张素(Angiotensin)-醛固醇(Aldosterone)系统调节而达到降压效用的血管紧张汞转化酶(ACE)抑制剂,是70年代中期发展起来的降压药。一系列的ACE抑制剂如卡托普利、依那普利·赖诺普利等已是治疗高血压、心力衰竭的重要药物。3羟基-3-甲戊二酰辅酶A(HMG-CoA)还原酶抑制剂,对防治动脉粥样硬化、降血脂有较好的疗效。噻氯匹定可抑制血栓素合成酶·用于防治血栓形成。离子通道类似于活化酶存在于机体的各种组织,参与调节多种生理功能。70年代末发现的一系列钙拮抗剂(Calcium Antagonists)是重要的心脑血管药,其中二氢砒锭啶类研究较为深入·品种也较多,各具药理特点。发现的钾通通调控剂为寻找抗高血压、抗心纹痛和I类抗心律失常药开辟了新的途径。细胞癌变认为是由于基因突变导致基因表达失调和细胞无限增殖所引起的,因此可将癌基因作为记点,利用反义技术(antisense technology)抑制细胞增殖的方法,可设计新型抗癌药。
80年代初诺氟沙星用于临床后,迅速掀起喹诺酮类抗菌药的研究热潮,相继合成了一系列抗菌药物,这类抗菌药和一些新抗生素的问世,认为是合成抗菌药发展史上的重要里程碑。
发现许多活性多肽和细胞因子·如心钠素(ANF)是80年代初从鼠心肌匀浆分离出的心房肽,具有很强的利尿、降压和调节心律的作用,内皮舒张因子(EDRF)NO是同时期证实由内皮细胞分泌具有舒张血管作用的物质,其化学本质后证实是一氧化氮(Ho)。它是调节心血管系统、神经系统和免疫系统功能的细胞信使分子,参与机体的多种生理作用,90年代后,有关NO的研究已成国际的热点。NO供体和NO合酶抑制剂的研究正方兴未艾·将为心血管抗炎药等开拓新的领域。
90年代初以来上市的新药中·生物技术产品占有较大的比例,并有迅速上升的趋势。通过生物技术改造传统制药产业可提高经济效益·利用转基因动物,乳腺生物反应器研制、生产药品·将是21世纪生物技术领域研究的热点之一。
发展的组合化学技术,能合成数量众多的结相关的化合物,建立有序变化的多样性分子库,进行集约快构速筛选,这种大量合成和高通量筛选,无疑对发现先导化合物和提高新药研究水平都具有重要意义。70-90年代,新理论,新技术、学科间交叉淮透形成的新兴学科,都促进了药物化学的发展,认为是药物化学承前启后,继往开来的关键时代。
本世纪中、后期药物化学的进展和大量新药上市,归纳为三方面主要原因:(l)生命科学,如结构生物学、分子生物学、分子遗传学、基因学和生物技术的进展,为发现新药提供理论依据和技术支撑(2)信息科学的突飞猛进,如生物信息学的建立,生物芯片的研制,各种信息效据库和信息技术的应用,可便捷地检索和搜寻所需安的文献资料,研究水平和效率大为提高,制药企业为了争取国际市场,投入大且资金用于新药研究和开发(R&D),新药品种不断增加,促进了医药工业快速发展。
不久我们将迎来知识经济的新世纪。知识创新,技术创新,促进科技进步和经济发展将是面临的主要任务·生命科学和信息科学将日益得到发展·成为下世纪的活跃领域,这为防病治病,新药研究提供重要的基础。药物化学与生物学科、生物技术紧密结合,相互促进,仍是今后发展的大趋势。
『捌』 药物靶点相互作用的化学本质即非共价键的类型有哪些
共价键(covalent bond)化键种两或原共同使用外层电理想情况达电饱状态由内组比较稳定化结构叫做共容价键或者说共价键原间通共用电所形相互作用其本质原轨道重叠高概率现两原核间电与两原核间电性作用
主要两种理论:现代价键理 论二轨道理论
现代价键理论简称 VB 称电配其主要论点:原未化合前未电 些未电自旋向相反则两两结合电原轨道发重 叠电两核间现机较电云密度较体系能量降低能共价键; 电与另电配能再与第三电配;原轨道重叠越所形 共价键越稳定等等
轨道理论简称 MO 现代价键理论完善发展其主要论点:能量相近 原轨道组合轨道;由原轨道组轨道数目变轨道能量改变;能 量低于原轨道轨道键轨道反反键轨道能量等于原轨道轨道 非键轨道;电定轨道运;违背每轨道容纳两 自旋向相反电原则电优先占据能量低轨道并尽能 占同轨道且自旋向相同;键原轨道重叠越所键越稳定; 轨道电排布遵循原轨道电排布原则即堡相容原理、能量低原理、 洪特规则轨道重叠原理;等等
『玖』 未来药物制剂的发展趋势
从20世纪初至80年代,是化学药物飞速发展的时代,在此期间,发现及发明了现在所使用的一些最重要的药物,为人类健康做出了贡献。
从合成药物发展的历史及现今科学技术的进步来展望21世纪合成药物发展的趋势,可以从下列几个方面加以评述。
1、从药用植物中发现新的先导化合物并进行结构修饰、发明新药仍是21世纪合成新药研究的重要部分。尤其是由于细胞及分子水平的活性筛选方法的常规化和分离技术的精巧化,有可能从植物中发现极微量的新的化学结构类型。同时,通过现代的筛选模型重新发现20世纪已经筛选过的植物化学成分的新用途,也为合成新药研究提供了更多的成功机会。
2、从天然来源发现新结构类型抗生素已经很困难,微生物对抗生素的耐药性的增加,不合理的使用抗生素,使得一种抗生素的使用寿命愈来愈短。这种情况促使半合成及全合成抗生素在21世纪会得到特别发展。
3、组合化学技术应用到获得新化合物分子上,是仿生学的一种发展。它将一些基本小分子装配成不同的组合,从而建立起具有大量化合物的化学分子库,再结合高通量筛选来寻找到一些具有活性的先导化合物。
4、有机化合物仍然是21世纪合成药物最重要的来源。
5、20世纪60~70年代,仪器分析(光谱、色谱)学科的逐渐形成,加快了化学合成药物开发的速度,使化学药物质量可控性达到相当完美的程度。进入 21世纪,一批带有高级计算机仪器的发明,分离、分析手段的不断提高,特别是分析方法进一步的微量化等将使化学合成药物的质量更加提高,开发速度也会进一步加快。
6、药理学进一步分枝化为分子药理学、生化药理学、免疫药理学、受体药理学等,使化学合成药物的有效药理表现更加具有特异性。21世纪,化学合成药物会紧密地推动药理学科的发展,药理学的进展又会促进化学合成药物向更加具有专一性的方向发展,使其不但具有更好的药效,毒副作用也会更加减少。
7、经过半个世纪的积累,通过利用计算机进行合理药物设计的新药研究和开发,展现出良好的发展前景。21世纪,酶、受体、蛋白的三维空间结构会一个一个地被阐明的,这给利用已阐明这些“生物靶点”进行合理药物设计,从而开发出新的化学合成药物奠定了坚实的基础。
8、防治心脑血管疾病、癌症、病毒及艾滋病、老年性疾病、免疫及遗传性等重要疾病的合成药物是21世纪重点需要开发的新药。
9、分子生物学技术的突飞猛进、人类基因组学的研究成就,将对临床用药产生重大影响,不但会有助于发现一类新型微量内源性物质,如活性蛋白、细胞因子等药物,也为化学合成药物研究特别是提供新的作用靶点奠定了重要的基础。
10、进入21世纪,化学合成药物仍然是最有效、最常用、最大量及最重要的治疗药物。人类基因组学的研究成就、中药现代化的巨大吸引力为我们带来了美好的前景,引起了包括政府部门、企业家以及媒体的关心与兴趣。将之作为重点科学事业给予支持与鼓励,这是值得赞赏的,但是若因此而形成对化学合成药物的忽视局面,甚至更多的渲染它的毒副作用,或用一些如“回归自然”、“绿色消费”等动听的名词来贬低化学合成药物的重要性和实用性,这是不全面的。当今世界大制药公司新药研究的主题仍是化学合成药物。而利用人类基因组学及中药现代化的成就开发出可以临床使用的药物并占有重要地位是一件十分困难的事业,需要相当时间的积累。假使说用化学方法合成药物是今天该做的事,否则我们与国际水平相比将会有更大的差距。